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We develop and describe a general method for evaluating collision integrals 
in the linearized Boltzmann transport equation which eliminates the neces- 
sity to repeat similar integration steps for each force law. Integrations not 
dependent on scattering cross-section variables have been carried out once 
and for all. The two mathematical innovations which facilitate these general 
integrations are (i) the development of  an expansion of the Burnett function 
XN~L(X + y) into products of  Burnett functions of argument x with other 
functions; and (ii) the use of representations of  the full rotation group to 
transform from space-fixed axes to axes aligned with the relative velocity 
vector of  colliding atoms. The relations so derived allow rapid evaluation 
of the collision integral from a knowledge of the scattering cross section. 
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1. I N T R O D U C T I O N  

The solution Of the Boltzmann transport equation to obtain transport 
coefficients is normally carried out by linearization and evaluation of the 
so-called collision integrals. (1) Traditionally the collision integrals are per- 
formed for each proposed interparticle force law. The development of a 
general method which eliminates the necessity to repeat similar integration 
steps for each force law would seem desirable. 

In this paper the integrations which do not depend on scattering cross- 
section variables, namely the relative speed of colliding atoms and the angle 
through which the relative velocity vector is rotated, are carried out once and 
for all. The two mathematical innovations which facilitate these general 
integrations are (i) the development of an expansion of the Burnett function 
XnLM(X + y) into products of Burnett functions of argument x with other 
functions; and (ii) the use of properties of the full rotation group to trans- 
form from space-fixed axes to axes aligned with the relative velocity vector of 
colliding atoms. The relations so derived allow rapid evaluation of the colli- 
sion integral from a knowledge of the scattering cross section. Recently (2) 
collision integrals have been presented in terms of summations of powers of 
cosines. A more convenient form in terms of orthogonal polynomials is now 
given. 

In Section 2 the problem is defined employing terms common to previous 
papers. Certain mathematical preliminaries relating to properties of Burnett 
functions are derived in Section 3. The general expression for collision in- 
tegral matrix elements for a gas mixture is deduced in Section 4 and in Section 
5 the pure gas result together with the hard sphere interaction example are 
given. 

2. T H E  M A T R I X  E L E M E N T S  OF T H E  L INEARIZED COLLIS ION 
O P E R A T O R  

The kinetic theory of an ideal monatomic gas mixture is described by the 
one-particle distribution functions f~(r, v~, t), where f~(r, vi, t) dr dv~ is the 
number of atoms of kind i with position coordinates in the range dr about r 
and velocity coordinates in the range dv~ about v~ at time t. 

The Boltzmann equation for the time evolution off,(r, vi, t) in the absence 
of external forces is 

[(0/~t) + v~.(~/~r)~(r, v,, t) 

= ~ f d3vsf d ~  ' u,7(u, ~)[f~(r, v,', t)fj(r, v/, t) 

- f~(r, v,, t)fj(r, v~, t)] (1) 
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The right-hand side is the collision term and includes contributions from the 
collision of an atom of kind i with its own kind as well as with all others; it 
specifically excludes inelastic collisions or collisions involving chemical 
reactions. Before collision the relative velocity of the ith to the j t h  atom is 
given by 

u = v ~ - - v ~  

and has magnitude u. Since the consequence of the elastic collision is the 
production of i and j atoms with velocities v / a n d  v/,  respectively, conserva- 
tion of momentum and energy ensures that u is also the magnitude of the 
relative velocity after collision. (Primes are used here and in that which follows 
to denote quantities appropriate to the atoms after collision.) The collision 
cross section a(u, ~) depends on the relative speed u of the atoms and the 
angle a through which the relative velocity is rotated into the element of 
solid angle d2g2 ' = sin a du d~. Here ~ is the azimuth angle of the relative 
velocity after collision u' with respect to a set of axes with z direction aligned 
with the direction of the vector u. It follows that the total cross section is 
given by 

t I 

error(U) = j d2f2 ' a(u, c 0 

It is convenient to define the collision operator 

d2~ " 

x ua(u, c0[f(r, v/, t)gs(r, v/,  t) - f ( r ,  v,, t)gs(r, v s, t)] (2) 

where the reduced mass/Z~y is defined by 

P,s = m~ms/(m~ + ms) 

In these expressions m~ (ms) is the mass and n~ (ns) is the equilibrium number 
density in position space of atoms of the ith (jth) kind. The Boltzmann 
equation (1) can then be written as 

[(ClOt) + v,-(0/or)Jf(r, v,, t) = ~ rr-a/2(kTIl~y)ll2ninsJ~s(f,f) (3) 
Y 

The equilibrium distribution function is given by 

foi(r, v,, t) = n,(md2~rkr) a/z exp(-m,vi2/2kT) = fo,(V 0 (4) 

say, where k is Boltzmann's constant and T is the absolute temperature. It 
follows that 

1_1 dav'f~ = 1 (5) 

The equilibrium distribution function (4) renders each side of the Boltzmann 
equation (3) zero. 
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A small-amplitude disturbance from equilibrium can be represented by 
the distribution function 

f ( r ,  vi, t) = f0~(vi)[1 + hi(r, v,, t)] (6) 

Substitution of this expression in (3) yields 

foi(V,)[(~/~t) + vi" (~/~r)]h~(r, v,, t) 

= ~ or- 3'2(kT/lz,y)ll2n,ny[JJfo ,fo) + J,,(fo ,foh) 
i 

+ J,~(foh, fo) + Jis(foh, foh)] (7) 

Using the definitions offo~(r, v~, t) [Eq. (4)] and the collision operator (2), it 
is a consequence of energy conservation that 

J,y(fo,fo) = 0 

The term J~j(foh, foh) has an integrand quadratic in the small disturbance 
factor h(r, v, t) and is therefore neglected in the linear approximation. The 
linearized Boltzmann equation is then 

fo~(Vi)[(~/~t) + vi.(~/~r)]h~(r, v~, t) 

= ~ rr- 312(kT[Izi,)t12n~nt[Jij(fo, foh) + Ji,(foh, fo)] (8) 
i 

The solution of this equation by the Chapman-Enskog method r in- 
volves expansion of the functions h~(r, v~, t) in terms of the normalized 
Burnett functions X~L~(g~), r viz. 

hi(r, g~, t) = ~ a~VLM(r, t)XNLM(r (9) 
NLM 

where 

XNLM(~O = [2Nt/(N + L + �89 2) YLM(~i) (10) 

In these equations the dimensionless velocity ~t is defined by 

~, = (mt/2k T)lt2vi (11) 

which magnitude ~i, YLM(~i) is the spherical harmonic, where ~f denotes the 
spherical coordinate angles which the vector ~i makes with fixed axes; and 
L~+ 1/2(~ 2) is the associated Laguerre polynomial defined by 

1)r~( n + ~)! X ~ (12) 
L"=(x) = m! ((m + a) ! (n -- m) ! 

m=O 
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Making the substitution (9) for h~(r, ~, t) in (8) then yields 

fo~(V,)XN,VM,(g,)[(O/Ot) + v~.(O/&)]c~,vM,(r, t) 
N'L'M' 

-- ~ ~,-~'~@T/~,,k"~,,,,,; ~ [aS'vM'~S(Io,IoXN'L'M ") 
] N'L'M' 

+ a~,VM'J~s(IoXN,VM',.fo)] (13) 

A set of equations for the coefficients a~LM(r, t) can then be obtained by 
multiplying each side of (13) by X*LM(g~), the complex conjugate Burnett 
function, and integrating over all vv The resulting equation can be written in 
terms of dimensionless velocities g~ and dimensionless relative velocities Y, 
where 

7 = (t~,/2kT)l'2( v, - vj) (14) 

of magnitude y: 

x [(a/St) + (2kTIm)l/2gc V]ai,VM,(r, t) 

= E (kT/l%)*/2nY ~ [a~'L'M'(r' t)(iNLM[CIIjN'L'M') 
j N'L'M" 

+ afU,L,M,(r , t)<iNLMIC21iN'L'M')] (15) 

In this equation the matrix elements of the linearized collision operators are 
defined as 

(iNLMIC~IjN'L'M') 

= ; d%X*,,U(g,)J,s(fo,foXN,VM,) 

x e x p ( - ~ 2  _ ~S*.)X*r.~(~O[XN,vM,(~S, ) _ XWVM'(~S)] (16) 

and 

<iNLM I C2IiN'L'M'> 

:= f d3v'X*r'M(gi)Jis(f~176 

V2zr-w2f dSg, f dSgs f d2f2, yct(y, a)exp(- <, 2 -  <,2)X~LM(~,) 

x [XN'L'M'(g,') -- XwvM'(gOl (17) 

where use has been made of the energy conservation property for elastic 
collisions 

~? + ~? = ~? + ~;.~ (18) 
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It is apparent that (16) and (17) are both eightfold integrals: three com- 
ponents of g~, three components of gj, and two angles in the integration over 
f~'. The dynamics of the collision enters only via the cross section o(~,, ~), 
which is a function of two variables. It should therefore be possible to 
perform six of the eight integrations once and for all, explicitly, without 
reference to the functional form of the cross section ~(~,, ~). The remaining 
two integrations over y and ~ are the only ones which, in principle, require 
knowledge of the dynamics, rather than merely the kinematics, of the 
collision. 

The aim of this paper is to carry out this program in detail and the re- 
sulting expressions (70) and (74) involve only two-fold integrals Ias defined by 
(71). The coefficients of the Ias are reduced explicitly to known quantities 
such as the CIebsch-Gordan coefficients. 

3. M A T H E M A T I C A L  P R E L I M I N A R I E S  

The reduction of the matrix elements (16) and (17) to a form involving 
twofold integration requires development of special identities involving 
Burnett functions. These will be derived in this section. However, it is first 
necessary to reduce the number of vector variables appearing in the matrix 
element integrals from three, namely ~ ~, ~j, and y, to two which are inde- 
pendent. It will then be clear which are the required Burnett function 
properties. 

3.1. Ve loc i ty  Coord inate  Transformat ion  

In the form given by (16) and (17) the matrix elements depend on ~ and 
gj explicitly through u which is a linear combination of them. Introduction 
of another variable vector, the dimensionless center of mass velocity X, where 

X = [2kT(m, + my)]-112(m,v, + mj-vs) (19) 

allows the matrix elements to be rewritten in terms of X and y only. From 
(11), (14), and (19) it follows that 

and 

where 

1~ = m~]2X + m~/2y (20) 

g~ = rn~/2X - m~/2y (21) 

m,j = m,/(m, + m,) (22) 
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~2+ ~s2=y2+X2 

d3~ dS~. = dSy dSx 

X = ~  t 

7 = 7' 

The matrix elements are then 

( i N L M I C I I j N ' L ' M ' )  

and 

(conservation of momentum) 

(conservation of energy) 

-- f f d3x f d2fl' ya(y, ,Q exp( -y2  - x 2) 

X*  (rn 112"~ mll2"Arx rrn112~ - m~]gy ') X NLMk tj  A -~ jf | J I .  N'L'M'k it Ju 

- X rml'2" - m~!2V)] N'L'M'L j~ 

The fundamental property 
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(23) 

(24) 

(25) 

(26) 

(27) 

( iNLMIC2I iN 'L 'M' )  

= d3vf d3xf d = ~ , r a ( r , a )  e x p ( _ r 2 _ x 2  ) 

v *  r~112~ 112 ~12 • ~-nr~cv,,~j ~ + mj~ y)[XN.vu.(mtj X + m~12Y ') 

- XZC.L.u.(m~]2X + m~/2V)] (28) 

of Burnett functions which enables the 
center-of-mass integration to be evaluated in these expressions is the orthogo- 
nality condition (all identities assumed in this section are given in Ref. 4), 

f d*x exp(-xZ)X*m(x)X,~,vm.(x) = 3.,~, 3.. 3ram. (29) 

This identity has immediate application in evaluating the first term on the 
left-hand side of (15). However, for (27) and (28) only after expanding a 
Burnett function of the form XNLM(X + y) does one obtain the corresponding 
matrix element integral 

A(a, nlm; b, n'l'm') = f d3x exp(-x2)X*,~(ax)X,~,vm.(bx) (30) 

Such an integral is then immediately evaluated with the help of (29) and an 
expansion for Xn~m(aX) in terms of Burnett functions with argument x. 

The key to this development lies in the establishment, in the next sub- 
section, of a generating function for Burnett functions from which an ex- 
pression for X~cLu(x + y) is deduced in Section 3.3. In Section 3.4, X~lm(aX) 
is expanded, allowing the evaluation in Section 3.5 of A(a, nlm; b, n'l'm'). 
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3.2. A Genera t ing  Funct ion for  Burne t t  Funct ions 

The generating function is deduced from the following identities(4): 

exp(ik.s) = ~ iz[4rr(2/+ 1)]u2(rr/Zks)~l~J~+~12(ks)Yzo(O ) (31) 
1 = 0  

where cos 0 = k.s/ks; 
! 

Y,o(O) = [4~r/(2/+ 1)] ~'2 ~ Y~(k) Y~m(g) (32) 
m =  - - I  

and 

exp(z)J,[2(tz) 11~1 ~ L,=(t)z" 
(33) (tz)=/z = L, (n + ~)! 

~ = 0  

The definition of J~(x) is 

J~(x) = (x/2) ~ ~ [(-1); / j !  (j + v)!](x/2) 2j (34) 
J = O  

Setting ~ = l + �89 ~/z = k/2, and X/t = s in (33), then substituting (33) 
and (32) into (31) yields 

exp(ik-s + �88 2) = 27r 3tz ~ ~ ~ i'(k/2)2"+'s~ L~+lt2(s 2) Y,* (k) Yu~(g) 
~=om=-z.=o(n + l + �89 

(35) 
Making the substitution 

k = -2 ix  

in (35) and then interchanging x and s leads to 
exp(2x.s - s 2) 

= (2~r3)1/2 z=o re=E-, ,=o ( -  1)~ [n! (n ~ 7 ~- ~)!]1/2 x~(s) (36) 

where the Burnett function definition (10) has been incorporated. 
Equation (36) shows that exp(2x, s - s 2) is a generating function for the 

Burnett functions X,~,~(x): The Burnett functions appear as coefficients in an 
expansion of the exponential as a triple power series in the components of the 
vector s, i.e., as a series with terms like (sl)V~(s2)V~(s3)V*, where the terms of 
same degree, V~ + Vz + V3 = 2n + l, have been arranged together into 
solid harmonies. 

3.3. An Expansion of XNLM(X ~ y~ 

The existence of the generating function (36) indicates that this expan- 
sion can be effected with the help of the identity 

exp[2(x + y) .s  - s 2] = exp(2y.s)exp(2x.s  - s 2) (37) 
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An expansion for exp(2y.s) follows from setting ik = 2y in (31), and sub- 
stituting (32) and (34) into (31): 

exp(2y.s) = 2rr */2 vt (v + A + �89 
h = 0  V=O u = - h  

It is now possible to compare left and right sides of (37) making the 
substitutions (36) and (38). The order of summations in these two expressions 
can be changed: This is a direct consequence of the absolute and uniform 
convergence of identities (33), (34), and (36). Thus, both left and right sides of 
(37) can be expressed as series in terms of S2N+LY*u(~), the coefficients of 
which can be compared. This leads immediately to an expression for 
XzcL~(x + y) in terms of X, zm(X), as will now be shown. 

The product of (36) and (38) is simplified with the help of the relation (~ 

[ ( 2 / +  1)(2A + 1)] 1/2 
Y * ( s ) Y * ( g )  = ~ [_ 4~r(ZL + 1) j (IAOOIIALO)(IAmI~IIALM)Y*M(g) (39) 

L , M  

where the allowed values of  L are those satisfying 

l a - t l  .< t.< A + L  
l l - Z  I ~< h ~ < l + Z  (40) 
I t -  a[ < L  < t +  a 

the allowed values of M are given by 

M = m + / z  (41) 

and (l,~rntzIIALM) is the Clebsch-Gordan coefficient, (6~ sometimes written as 
S(ea~ (5~ Combining (36), (38), and (39) then leads to Lmlz �9 

exp(2s.y) exp(2x.s - s ~) 
y(~+" X.~(x) 

= ~(2~")~'~ ~ ~ ~ ( -  1)" ' (~ + a + �89 [,,' (n + t + �89 
Avlz Iron L M  V .  

• (laOOjlaLO)(lAmt~llALM) ya,(p)s~2~ +z + 2~ + a) Y*M(g) (42) 

subject to the above constraints on L and M values. 
From (36) it follows that 

exp[2(x + y) .s  - s ~] 

XNLM(X + Y) = (2rra) 1/2 ~ ( -  1) N 1),1~/= sZN+z Y*~(s) (43) 
LMN [ N I ( N + L + -  . 

Equating coefficients of s 2N + ~" Y*M(S) in expressions (42) and (43) yields finally 

(vAnlII Di[NL)  X ~ , ( x  + Y) ?~ [.! (. + l + })!1 -= 
Irn~ 

x (lamt,[lALM)y(=~+a~Y~.(f,)X.z=(x) (44) 
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where 

(,,~nl}]O]]Nt) 

= (_l)n+%r[(21 + 1)(2)t + 1)]1'2 [N! (N + L + �89 
2L + 1 ~, v! (v + ,~ + �89 (lAOO[laLO) (45) 

I_ 

and where L, M and N values are subject to the constraints (40), (41), and 

2 ( n + v )  + l +  a = 2 N + L  (46) 

3.4. An Expansion of Xnu,,(ax) 
From the definition (10) it follows that  

2n ! 1 l/2 
X~zm(aX) = (n + 1 + �89 (ax)ZL~§ 11~(a2x2) Yzm(O, (~) (47) 

An identity exists (4~ for simplifying the argument  of  the associated Laguerre 
polynomial,  viz. 

(n + / + �89 2,~-~(1 - a)kL~+_~(x 2) (48) L,(~( Ax 2) k! ( n -  k +  l+�89  / c = 0  

Thus, with A = a ~ and ~ = l + �89 (48) allows us to rewrite (47) as 

Xnzm(aX) --- [2n! (n + l + �89 

a2(~-k)(1 _ a2)k 
x ~ k !--~ --- k -t?'/" T ~)! x~L~+-~(x2) Y~(O, $) (49) 

k = 0  

Application of  the Burnett  function definition (10) to this equation produces 
the required identity 

Xn1=(ax) = [n! (n + l + �89 

aZ(~_k)( 1 _ aZ)k 
• k! [ ( .  - ~)~. (~= ~-+ t + �89 x~_~, , .~(x)  (50) 

k = O  

3.5. T h e  E v a l u a t i o n  o f  A(a, him; b, n'l'm') 

The defining integral (31) for A(a, nlm; b, n'l'm') can now be evaluated 
using (50) and the orthogonali ty condit ion (29). For  a and b real the integral 
is then 

A(a, nlm; b, n'l' m') 
= 3w ~mm' [n! n'! (n + l + �89 (n' + I' + �89 v 

/ c = 0 / r  

a2(~-k)(1 _ a2)kb2(~'-~')(1 _ b2)~ ' 
X 

k l k ' !  [(n - k) I (n '  - k ' ) l (n  - k + l + �89 (n' - k '  + l '  + �89 

(51) 
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It is convenient to set 

n - k = K = n ' - k '  

so that K can take values between zero and the minimum of n and n'. 
Equation (51) finally becomes 

A(a, nlm; b, n'l'm') = 8u, 8,~,,,,[n! n'! (n + l + �89 (n' + l + �89 1/2 

ab b2)]112) x (ab)'(l -- a2)"(1 -- b2)'fd,, ([(1 - a2)(1 - 
(52) 

where 
min(n,n')~ U2K 

f nln,(u) (53) 
7-, (n - K)] (n' - K)I K! (K + i + �89 K=0 

Two special cases of this relation will be useful in the next section: The 
first is that for which 

1 - a = = b ~" ( 5 4 )  

so that (52) reduces to 

A~(a, nlm; b, n'l'm') = 3u, 3ram, In] n'! (n + l + �89 (n' + l + �89 ~/9' 

x a2"'+'b="+~f~,,,(l) (55) 

and the second is that for which 

a 2 = b  2 =  1 - e  = (56) 

so that (52) reduces to 
A(a, nlm; a, n'l'm') = 3w 3ram, [hi n'! (n + l + �89 (n' + 1 + �89 1/2 

• I [ a2 ~ (57) 
J""'\l  - a =] 

4. E V A L U A T I O N  OF THE M A T R I X  E L E M E N T S  

The matrix elements of the ]inearized collision operators can now be 
evaluated using the results of Section 3. 

4 , 1 .  ( i N L M I C ~ I j N ' L ' M ' )  

From (27) the Burnett functions for this matrix element can be written as 

XNLM(ml]2X + m~/2y) 

<,,anZlIDIIUL) 
= ~ ~ [n! (n + l + �89 ( 1 2 u n t ' l l a L M ) ( m } 1 2 7 )  ~*+~' 

lmn hv.a 

x Yau(~,)X,t,,(m~]2Z) (58) 
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and 
Z ~  Im  ~l~" - m t P ' r ' )  " L ' M ' k  . f {  1 , ,  

( ' /  A 'n ' I ' I I  D I I N ' L ' >  . . . . . . .  , ,  . . . . . . . .  , 
= ~ ~ [ n ' ! ( n ' + T T ~  ,2Uamlzlt^L'~V') 

I 'm 'n"  ~ " " ' " 

x (m~/~ ,y  ~'+~" ~' ~'~ Yw.,(-y )Z,~.,,,n,(rnj, X) (59) 

The third Burnett function involved is the same as (59) but with y replacing y'. 
Inspection of (58) and (59) shows that when they are substituted in the 

matrix element equation (27), the X integral can be performed immediately. 
Using (55) and the fact that mu = 1 - mj{, it is given by 

f dax e x p ( -  XZ)Xnzm(m~JZx)Xn,vm,(m~L2Z) 
�9 . l ~ 1 1 1 1 2 ~ n ' + Z 1 2 r w n + l 1 2 f t  (1~ (60) = 3u, Sm~,[n!n'V(n + l + � 8 9  + I' + ~ y . j  ,,,u . . ~  J~'~*~ 

Thus (27) becomes 

(iNLM[C~IjN'L'M') 

= a/-2~r-u:=~ ~ ~ 8u'8,.m'(vAnl[[O[INZ) 
Iron hvt t  I 'm 'n"  A ' v ' # "  

• ( r  D[IN'L')(IAmffIIALM)(I'A'm'ff'II'A'L'M') 

X , , ~ j  "'7/. 

x [ ( -  1) a" Ya,.,(9') - ( -  1) a Ya.(9)l (61) 

where the spherical harmonic property Ya,, ,(-9')  = ( -  1) a' Ya'u,@') has been 
used. 

The remaining integrals are evaluated most simply by transforming all 
quantities from a coordinate system defined relative to the space-fixed z axis 
to one defined relative to the initial relative velocity or 9 direction. The 
element of solid angle d~2' = sin ~ d~ arc is already so defined: The angles 
(a, r denote the direction of  y'  in this system. 

Under such a transformation Ya'w(9') can be expanded as c~) 

Ya,..(9') = ~ O.a'.,(R) Ya'w,(% r (62) 

where D~,,r is the ff"tz' matrix element of the irreducible representation 
Dr(R) of the rotation group for the rotation R that sends the direction 
into the space-fixed z axis. It follows that 

{ 47r ~,2 
D~'v,(R) = \2~-~--4-~1 Yww('~) (63) 
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In the new coordinate  system, the r integration of  (61) then only involves 

f dr Y;,.~..(~, r = 3,,. 0 Ya.o(a, O) (64) 2~" 

so that  by (62)-(64) 

where 
f dr Y~,.,,,.(~') = 2~-P;,(cos ,~) Y~,,,,,(9 (65) 

4.tr ~1/2 
Pa(cos a) = \ ~ ]  Y~0(~) (66) 

is the Legendre polynomial  in cos , .  
Incorpora t ing  (65) and the or thogonal i ty  proper ty  of  spherical harmonics,  

viz. 

f d2f2 Y~,~,(~)Y~(~) = 3~, ~ ,  (67) 

into the angle integrations of  (61) yields 

I; = - 3,,. 3aa. 2~r(- 1) x dc~ (sin c0e(y. ~)[1 - Pa(cos c0] (68) 

The delta functions 3,... 3a~.. 3~v. 3ram. then allow use of  the proper ty  of  
C lebsch -Gordan  coefficients (6~ that  

(IAmt~[IALM)(IAmt~IlaL'M') = 3zL, GMM" (69) 
m . l t  

Finally, substi tution of  (68) and (69) in (61) yields 

(iNLMIC11jN'L'M') = - S.v 3.M, ~ ~ K~N'LIa, (70) 
h s 

where s = v + / ,  

fJJo L,s --- dr  d,~ exp(-72)~,E2~'+'~+%(~,, ,~)(sin ~,)[1 - P~,(cos ,~)] (71) 

K~ N'z -- 2V/2~--~/z( - 1) a ~ ,  ~ ~ <vLnl[lDllNL)(s - v, An'IlID[[N'L ) 

x ,,,~s'~(u 2) + n" + s - v + (z 12)m(~./2)..vz + n + v + (~/~)~nn,~,~z ( 1 ~ (72) 

and, as defined by (53), 

min~,n') 
f~n,(1) = [(n -- K)!  (n' - K) !  K!  (K + l + �89 (73) 

K=O 
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4.2. <iNLMIC2IiN'L'M' > 

A similar analysis to that given above leads to 

<iNLMIC2IiN'L'M'> = -3LL" 3MM, ~ Z-, ~ "'~r-rNmzI~ (74) 
s 

where Ia~ is as defined in (71). 

n ~  "z = 2"~/'2rt -1'2 ~ ~ ~ <vAnlIIDILNL><s - v, An'IIIDIIN'L > 
"It [ n l~ " 

~,* ,~,~+-'+~+~r* r~  t~ ~ (75) X t t ~ t j t , ~ y  ~ a n n , k t t ~ i l ~ t L j j  

and 

min(n,n')  

f~,v(mjrnj) = ~ (m,/mj)2K[(n - K)!(n' - K)!K!  (K + l + �89 (76) 
K = 0  

The absence of the factor ( -  1) a in (75) in contrast to (72) is important since 
it leads to cancellations in the collision integral for like atoms. 

. M A T R I X  E L E M E N T S  FOR THE PURE GAS:  H A R D  SPHERES 

For a pure gas, in which only one kind of collision can occur, the 
right-hand side of (15) reduces to 

(2k T)I'2n,a~'L'M'( NLM [ C, IN'L' M'> 
N ' L ' M "  

<NLM I C, I N'L'M') 
= <iNLMIC~IjN'L'M'>m,=m, + <iNLM[C2IiN'L'M')m,=m, 

where 

Such a collision between like atoms implies 

mij. = rnji = �89 

f~.,(mJmy) reduces to f~.,(l), and (77) becomes 

<NLMICIN'L'M'> = ~LL" ~ "  ~ ~ GNN'LI - -  hs h s  

h =  2 , 4 , 6 , . . .  s 

where 

G ~  'L = 24(2rr)-l' 2 ~ ~, ~ '  2-('+"+"'+s+~'<~AnlIIDIINL> 
V l ~,ft '  

• (s - v, An'lllD[lN'L)ft~.,(1) 

Finally, the constraint (46) allows one to make the substitution 

I + n + n '  + s + A = N + N '  + L  

(77) 

(78) 

(79) 

(80) 
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SO that 

GNN'L 2-{~+~'+L-a,(2~.)-1,= ~ ~ ~ (,,anlIIDI]NL > 
AS 

V [ n . ~  ~ 

x ( s  - v, a n ' Z l t D l l N ' L ) f ~ , ~ , ( 1 )  (81) 

Various features of  expression (78) for the matrix element are important 
from the viewpoint of computation: 

(a) Legendre polynomials are employed rather than the usual summa- 
tions of powers of cosines. 

(b) The matrix element is symmetric with respect to interchange of N 
and N' .  

(c) L and L' must be equal for  a nonzero result (see also Ref. 2). 
(d) M and M '  must be equal for a nonzero result, in which case the 

matrix element is independent of M (this is a special case of  the 
Wigner-Eckart theorem). 

(e) The t = 0 term is always zero, so the summation over ,~ takes the 
values A = 2, 4, 6 ..... 

Point (e) taken in conjunction with the conditions (40) and (46) implies that 
the five matrix elements 

~O001CdN'L'M'), (IOOIC~]N'L'M'), (OI-1]CdN'L'M'), 
(Oll]C~[N'L'M'), and (O10]CdN'L'M') 

are zero for all (N', L', M'). These matrix elements are associated with the 
five basic hydrodynamic modes which persist in the long-wave limit. (2~ 

Values of the coefficient Gf~ 'z have been computed for the cases where 
each of L, N, N '  ~< 9. 2 

5.1. Hard Sphere  In teract ion  

The example of the hard sphere interaction model is particularly simple. 
Using the cross section 

(,(r, ~) = a~/4 

where a is the sphere diameter, the expression (71) for/as reduces to 

I . s  = a2(a + s + 1) ! /4  

The matrix elements (78) for the cases where each of L, N, N' ~< 9 and with 
a = 1 have been computed. These results are consistent with those of Foch 
and Ford, ~m who calculated some of the ratios of matrix elements for the 
cases L ~< 3 and each of N, N '  ~< 4. 

2 The results of this computation are stored in the Data Bank of the American Society 
for Information Science (ASIS). 
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